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ABSTRACT 

2b33% 
Photoionization cross  sec t ions  (bound-free absorption 

c o e f f i c i e n t s )  have been measured f o r  the 3s23p2 3 P  ground s t a t e  

and ’D excited l e v e l  of the  n e u t r a l  s i l i c o n  atom. The measure- 

ments, made i n  absorption w i t h  t he  use of r e f l ec t ed  shock 

techniques, y ie ld  c ross  sect ions of about 37 and 34 megabarns 

(lo-’* cm2 ) respect ively,  near the ionizat ion limits. Theoretical  

quantum defect  ca lcu la t ions  give s a t i s f a c t o r y  comparisons. The 

next excited ’S l eve l  i s  discussed. 



INTRODUCTION 

The as t rophys ica l  importance of s i l i c o n  is w e l l  known; it 

is  one of the m o s t  abundant elements i n  t h e  universe. In  the sun 

i t s  abundance r e l a t i v e  t o  hydrogen is 3.2 x lo-' (Goldberg, et a l . ,  

1960) which, for comparison, i s  roughly one-tenth t h e  abundance of 

carbon and about t e n  t i m e s  t h a t  of isan. S11Fmn i _ n _  its rreutra!. 

form plays a p a r t i c u l a r l y  strong role i n  stellar spectra because 

of i t s  abundance and a l so ,  t o  a lesser degree, because of i t s  

ioniza t ion  p o t e n t i a l  (8.15 eV), which is high r e l a t i v e  t o  t h a t  

of t h e  abundant m e t a l s .  Thus, when ca l cu la t ing  ion iza t ion  equ i l i -  

brium i n  a s te l la r  atmosphere according t o  t h e  Saha equation, we 

f i n d  tha t  the r a t io  of t h e  concentration of ne tu ra l  a t o m s  to  

t h a t  of ions w i l l  be l a rge r  for s i l i c o n  than for  t h e  abundant 

m e t a l s .  This f a c t o r  e n t e r s  i n  t h e  ana lys i s  of overlapping con- 

t inuous absorption contr ibut ions of gaseous mixtures. 

An ioniza t ion  po ten t i a l  of 8.15 e V  implies a ground s t a t e  
0 

photoionization continuum with a l i m i t  near 1521 A. Other impor- 

t a n t  bound-free (b-f) continua f r o m  low-lying l e v e l s  w i l l  a l s o  

cause absorption up t o  a l m o s t  2000 A. 

(about 1000 - 2000 i) is of p a r t i c u l a r  importance i n  t h e  cal- 

cu la t ion  of model atmospheres of B- type  s t a r s  ( e f f ec t ive  tempera- 

t u r e s  of some 1040K) because some f r a c t i o n  of t h e  f l u x  w i l l  be 

emitted i n  t h i s  wavelength region. m e n  though m o s t  of t h e  

0 

This wavelength range 
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s i l i c o n  is  ionized, t h i s  b-f absorption by the  neut ra l  atom can 

be important and should be included i n  the  model ca lcu la t ion .  

In  t h e  sun ( a t  some 570O0K) only an in s ign i f i can t  p a r t  of 

t h e  f l u x  is emi t t ed  i n  t h i s  wavelength range, b u t  the  importance 

of s i l i c o n  absorption is  rea l ized  i f  one attempts t o  observe 

regions of t h e  sun reaching i n t o  the  chromosphere. Neutral 

s i l i c o n  b-f processes i n  the u l t r a v i o l e t  a r e  so st rong that 

they o b l i t e r a t e  the  photosphere, and hence we observe r ad ia t ion  

o r ig ina t ing  from regions higher i n  the  so la r  atmosphere (see 

Gingerich and Rich, 1966, and Tousey, e t  a l . ,  1965). 

ENERGY LEVELS AND IONIZATION LIMITS O F  NEUTRAL SILICON 

The recent  work of Radziemski and Andrew (1965) on the  a r c  

spectrum of s i l i c o n  provides the  most complete published descrip- 

t i o n  of t h i s  atomic system. W e  w i l l  make frequent reference t o  

t h i s  paper (hereafter denoted as R & A )  i n  the  following para- 

graphs, while we  w i l l  refer less t o  t h e  c l a s s i c  publ icat ions of 

Moore (1949, 19501, which are somewhat dated. 

The ground s t a t e  e lectron configuration of S i  I is 3s23pa, 

3 1 which gives rise t o  three  L-S coupled terms: P, D, and S. 

A composite energy-level diagram is  shown i n  Figure 1. The 

establ ished t e r m s  of t h e  3s3p3 configuration a r e  shown separa te ly  

t o  ind ica te  the  source of the one experimentally recognized 

d i s c r e t e  l e v e l  lying above the ion iza t ion  l i m i t  t h a t  might 
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e x h i b i t  autoionizing features .  This matter w i l l  be mentioned l a t e r .  

Table 1 l is ts  those energy l eve l s  of immediate interest ,  a s  

given by R & A. 

"he ground s t a t e  of the S i  I1 ion is  s p l i t  i n t o  two l eve l s ,  

P, and 2P3, a ,  each of which represents  series l i m i t s  of several  

Rydberg series of t h e  neutral  atom. Ionization continua w i l l ,  of 

course, come from both l i m i t s ,  but i n  the  present  work we  w i l l  

no t  be able t o  make such f ine  d i s t inc t ion ;  the  continua measured 

and re fer red  t o  a r e  composite and involve contr ibut ions from a l l  

series going t o  both l i m i t s .  

such a s  opaci ty  calculat ions i n  model atmospheres, these d e t a i l s  

w i l l  not be important. A l s o ,  i n  high-density plasmas they w i l l  

no t  be observable because of so-called plasma e f f e c t s  near t he  

series l i m i t s .  

2 
- 
2 

In  some astrophysical  appl ica t ions ,  

For a proper in t e rp re t a t ion  of highly resolved so la r  spectra  

the d e t a i l s  between the  l i m i t s  may be of importance. In  good 

furnace spectra  obtained by M. Wilson and W. R. S. Garton (pr iva te  

communication), autoionization of l i n e s  going t o  the  upper l i m i t  

with the  continuum of  the  lower l i m i t  is apparent fo r  t r a n s i t i o n s  

from the  3P l eve l s .  

t r a n s i t i o n s  from the  'D and 'S l eve l s .  

e l ec t ron ic  s t ruc tu re  is s imilar  t o  t h a t  of S i  I, exh ib i t s  these 

featnres very nicely ( G r t o n  an= qiPson, 19661, and the  e f f e c t  

Similar phenomena are quite possible  with 

Pb  I, an atom whose 
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is c e r t a i n l y  w e l l  known i n  the noble gases argon, krypton and 

xenon. 

of t h e  sun (or of r a r e  laboratory plasmas) t he  region between 

t h e  l i m i t s  may have a non-continuous appearance due t o  t h e  

Beutler-Fano prof i les .  The pos i t ions  of t h e  various l i m i t s  are 

l i s t e d  i n  Table 2; R & A  can be consulted t o  determine which 

series go t o  which limits. 

The p o i n t  here is  t h a t  i n  very highly resolved spectra 

P la te  1 shows t h e  s i l i c o n  shock-heated absorption spectrum 

i n  the  region t h a t  i n t e r e s t s  us .  

have been noted. 

The pos i t i ons  of t h e  l i m i t s  

EXPERIMENTAL 

A l l  experimental work reported here  was done i n  absorption 

by means of standard reflected shock-wave techniques i n  conjunc- 

t i o n  with a one-meter normal incidence vacuum spectrograph. 

The shock tube, of conventional design (see Gaydon and 

Hurle, 19631, was constructed of hard-drawn copper with a 

c i r c u l a r  c ros s  sec t ion  and an in s ide  d i a m e t e r  of 2% inches. 

opt ical  a x i s  was s i t u a t e d  1 c m  from t h e  end w a l l  and perpendi- 

cu la r  t o  t h e  shock-tube ax is .  The shock w a s  i n i t i a t e d  by a self- 

The 

1 
I 

I 

ruptur ing aluminum diaphragm 0.006 inches thick. The dr iver  gas ~ 

~ 

w a s  hydrogen, a t  r o o m  temperature, and t h e  l o w  pressure  gas w a s  

commercial argon, t o  which were added very small amounts of t h e  

v o l a t i l e  s i l i c o n  compound. Before each run t h e  tube was cleaned 

w i t h  acetone and pumped with an  o i l  d i f fus ion  pump down to  a 



5 

pressure of Torr. Such a procedure was general ly  adequate, 

although the  spectra  yielded weak impurity l i n e s  of C I and 

0 I, and, fo r  t he  cooler shocks, weak t r a c e s  of the  ( V I ,  0) 

bands of t he  Fourth Pos i t ive  system of carbon monoxide. 

The s i l i c o n  was introduced i n  gaseous form from t h e  very 

v o l a t i l e  l i q u i d  compound t r i ch lo ros i l ane  (SiHC1, ) , which has 

a vapor pressure of several  hundred Torr a t  room temperature 

and is less r eac t ive  and eas i e r  t o  handle than other  v o l a t i l e  

s i l i c o n  compounds such a s  the s i l a n e s  o r  S i C l , .  The SiHcl,, 

supplied by Alfa Inorganics, Beverly, Massachusetts, had a 

nominal p u r i t y  of 96-97%, with S i C l ,  a s  i ts primary impurity. 

The gaseous mixture of SiHC13 and argon was prepared i n  

a c lean g l a s s  system previously evacuated t o  lo-" Torr, o r  better. 

The m i x t u r e s  w e r e  prepared by measuring a quant i ty  of the  SiHC1, 

(some 0 .1  t o  1 Torr) with a Baratron capaci t ive diaphragm bridge. 

To t h i s  was added the  argon (of the  order of 100 Torr) a s  measured 

by a Wallace and Tiernan aneroid manometer. The m i x t u r e  was mag- 

n e t i c a l l y  stirred fo r  a few hours and s u i t a b l e  precautions w e r e  

taken aga ins t  poss ib le  photodissociation. The ove ra l l  accuracy 

of t he  concentration of s i l i c o n  i n  the  mixture should have been 

1% o r  better. 

The mixture was then introduced i n t o  t h e  shock tube t o  an 

i n i t i a l  pressure, pl, Gf ssme 2f! Tcrr. The gas was coxpressed by 

a Mach 5 o r  6 inc ident  shock, t h a t  produced temperatures of some 
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5000 - 7000°K behind t h e  r e f l ec t ed  shock. 

made i n  absorpt ion with a co-axial f l a s h  tube of t h e  type described 

by Garton (19591, Garton, e t  a l .  (1960) , and Parkinson and Reeves 

(1961). By means of L i F  op t i c s  t h e  f l a s h  w a s  focussed onto t h e  

s l i t  of a one-meter normal incidence concave vacuum spectrograph. 

A Bausch and Lomb gra t ing  of 1200 lines/mm produced a reciprocal 

d ispers ion  of 8.25 i/mm a t  the photographic p l a t e .  O p t i m u m  s l i t  

w i d t h s  w e r e  about 35p, yielding a reso lu t ion  of about 0.3 i. 

The measurements w e r e  

A schematic diagram of t h e  experimental apparatus is shown 

i n  Figure 2 .  Since a l l  measurements w e r e  made w e l l  b e l o w  2000 

and shock temperatures w e r e  b e l o w  7000"K, l a s t i n g  for only a f e w  

hundred ksec, t he re  w a s  no need t o  use a fas t  shut te r :  shock 

emission was negl ig ib le .  The sequence of measurements and f l a s h  

tube f i r i n g  was i n i t i a t e d  by a pressure transducer sensing t h e  

a r r i v a l  of t h e  shock a t  t h e  end p l a t e .  

The pressure  behind the reflected shock (commonly denoted 

p5 )  was measured d i r e c t l y  with a K i s t l e r  quar tz  transducer and 

charge amplifier combination. The transducer was located i n  the 

end plate of t h e  shock tube. Recording w a s  accomplished through 

an oscilloscope, and t h e  overa l l  accuracy of t h e  measurement w a s  

about 5%. 

The temperature was measured d i r e c t l y  by t h e  l i n e  r eve r sa l  

technique. This technique has been described by C;lydrr_n, and H r x r l e  

(1963) and t h e  s p e c i f i c  d e t a i l s  of t h e  o p t i c a l  arrangement used 
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successfu l ly  i n  t h i s  laboratory have been given by Parkinson and 

Reeves (1964). The l i n e  used for these  experiments w a s  t h e  A3905 

l i n e  of S i  I, 3p2 This is  a subordinate l i n e  whose 

lower l e v e l  has an exc i t a t ion  p o t e n t i a l  of 15394 cm-' ,  which helps  

t o  insure  that t h e  temperature measured was t h a t  of t h e  bulk of 

t h e  plasma and not t h a t  of the  boundary layer  only. 

l aye r  p i t f a l l  was fu r the r  avoided by keeping the  temperature 

measurements non-opt ical ly  thick.  The system was ca l ib ra t ed  

w i t h  a P h i l l i p s  tungsten fi lament standard lamp and a microscope 

i l lumina tor ,  which served as a secondary standard. The ca l ib ra t ion  

was done s t a t i s t i c a l l y .  It was necessary t o  assume t h a t  t h e  1P21 

photomultiplier be l inea r  o v e r  about three orders  of magnitude. 

"he plasma temperature was measured about 100 psec a f t e r  the 

passage of t he  r e f l ec t ed  shock and about 15  wsec before  the  

absorption spectrum was taken. Some recent  experiments have 

increased t h e  r e l i a b i l i t y  of such temperature measurements (see 

Garton, e t  a l . ,  1965); the  accuracy of t h e  measurement is about 

100"K, or about 2%. 

S - 3p4s 'Po 

This boundary- 

The spec t ra  w e r e  recorded photographically on I l f o r d  Q-2 

plates,  which w e r e  calibrated by means of transmission screens 

placed i n  t h e  evacuated shock tube i n  t h e  l i g h t  path.  

DESCRIPTION O F  THE METHOD 

In a uniform plane one-dimensional purely absorbing medium, 

t h e  equation of r ad ia t ive  t r ans fe r  is  given a s  
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where I is the  monochromatic r ad ia t ion  i n t e n s i t y  a t  frequency 

v , and x i s  the dis tance along t h e  l i n e  of s igh t .  H e r e  H is 

the  opacity,  o r  volume absorption coe f f i c i en t ,  and can be 

defined a s  

V 

n = C n o  (2 1 .c v.c .c V 

where n is the  number density (un i t s  of ~ m - ~ )  of s i l i c o n  atoms 

i n  l e v e l  4 , and u is the  absorption cross  sect ion (units of V4 

cm2 ) of such atoms a t  frequency v .  

.e 

Over a specif ied distance,  L, equation (1) e a s i l y  y i e lds  

t h e  fami l ia r  relation 

T I - n  L - e v  V 

V 

- -  
Io 

w h e r e  Io is the  incident  i n t ens i ty  and I is the  emerging o r  
V V 

observed in t ens i ty .  Straightforward measurements of I v ’  1; J 

and L immediately y i e ld  n . 
V 

If a l l  bu t  one of the  t e r m s  of t h e  sum i n  equation (2 )  a r e  

negl ig ib le ,  then by ascer ta ining t h e  l e v e l  populations, n we  

can obtain the  atomic parameter (5 . These l e v e l  populations are 

calculated from the  measured temperature, pressure,  and chemical 

composition of the  gas with the  assumption t h a t  a t  the  t i m e  of 

L’ 

V L  
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t h e  experiment the gas i n  the l i n e  of s i g h t  i n  t h e  shock tube w a s  

i n  local thermodynamic equilibrium (LTE) and tha t  conditions are 

p e r f e c t l y  uniform ( i . e . ,  boundary l aye r s  are neglected) .  Under 

such condi t ions the l e v e l  populations are given by the  combined 

chemical equilibrium and Boltzmann equations. 

equilibrium equations can be expressed by 

The chemical 

N ~ N ~  = K ~ ~ ( T )  

N~~ 

w i t h  

where N i s  the number densi ty  of molecular species A, etc. ,  

~1 is t h e  reduced mass of the  r eac t ing  components, h is Planck 's  

constant ,  k is  Boltzmann's constant, U (TI is the i n t e r n a l  par t i -  

t i o n  function of species  A, etc . ,  D is the d i s soc ia t ion  energy 

of t h e  r eac t ing  A, B, AB s y s t e m ,  and T is the absolu te  temperature. 

I n  t h e  l imi t ing  cases, A and B can be atoms. When we consider 

i on iza t ion  (as  we c e r t a i n l y  must) we  include, as  a spec ia l  case 

of equation (4), t h e  Saha equation: 

A 

A 

AB 

N+ N 
A e = SA(T) , 

NA 
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w i t h  

I -  

where N+ is t h e  number densi ty  of s i n g l y  ionized species A, N 
A e 

is t h e  e l ec t ron  densi ty ,  m is t h e  mass of the e lec t ron ,  UA(T)  

is the i n t e r n a l  p a r t i t i o n  function of the ion, and I is t h e  

ion iza t ion  p o t e n t i a l  of species A. Equations anaiagous to (6) 

+ 
e 

A 

for  higher ion iza t ions  could e a s i l y  be considered, b u t  t h e r e  is  

no need t o  do so under t h e  present  conditions;  doubly ionized 

species are completely negligible.  

C h a r g e  n e u t r a l i t y  of  the plasma requi res  t h a t  

+ + 
e A B 

N = N  + N  + - - -  J 

and "conservation of nuclei" r equ i r e s  that  

+ 
+ 2 N  + N  + - - - -  = constant.  

A + N~~ A2 A 
(9) 

The sum includes a l l  molecules t h a t  contain nuclear species  

A, and t h e r e  exists one such equation for  each nuclear species .  

To these we add t h e  equation of state of a perfect gas: 

(10) 
+ 

p = ( N  + N  + N  + N  + - - -  ) k T .  e A A AB 

Given t h e  measured temperature and pressure,  along with the  rela- 

t i v e  concentration of the various atomic nuc le i ,  equations (41, 

( 6 ) ,  (81, ( 3 )  and (10) ccnstitute a necessary and sufficient set 

which y i e l d s  an i t e r a t i v e  so lu t ion  for t h e  absolu te  number d e n s i t i e s  
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of the various components. 

In  the  present  context--that of shock-heated SiHC1, i n  

argon--dissociation i s  qui te  complete and any molecular formation 

(even of HC1) i s  negl igible .  Also, e s s e n t i a l l y  a l l  e lec t rons  are 

supplied to  the plasma by the  s i l i c o n .  Neither of these r e s u l t s  

is surpr is ing.  

The l e v e l  populations can now be immediately derived f r o m  

t he  Boltzmann relat ion i n  the form 
-E /kT a 4, 

where E i s  the  exc i t a t ion  po ten t i a l  of l e v e l  4 and g is the  
6 t 

s t a t i s t i ca l  weight of l e v e l  4. 

In  plasmas of any s ign i f i can t  charged-particle densi ty  

there occurs an e f f ec t ive  depression of t he  ionizat ion po ten t i a l  

due t o  the  per turbat ion of the  atomic po ten t i a l  funct ion by near- 

by charged p a r t i c l e s .  It i s  of some importance t o  a sce r t a in  the 

magnitude of t h i s  ionizat ion lowering because of t h e  manner i n  

which t h e  ionizat ion poten t ia l  affects the  number densi ty  of t he  

p a r t i c l e s  i n  thermodynamic equilibrium through equations (6) and 

( 7 ) .  There is  a simultaneous phenomenon known as the  " level-  

merging" of high bound-levels ( c f .  G r i e m ,  1964) which manifests 

i t s e l f  i n  the s a m e  manner as  the  former e f f ec t :  namely, an 

apparent redward advance of t h e  continuous absorption limit 

If  we  attempt t o  assess the ionizat ion lowering by observing 

the  spectra  (see Figure 41, then we  w i l l  m o s t  l i k e l y  obtain a 
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r a t h e r  poor upper 

merging should be 

l i m i t  for the ionizat ion depression; l e v e l  

very ac t ive  because of the  r e l a t i v e  complexity 

of the e lec t ron  s t ruc tu re  of s i l i c o n .  A t  any rate,  an observation 

of t h e  spectra  show a "non-continuum" appearance by about 1534 A, 

corresponding t o  an energy of about 65,200 cm-' .  S o m e  confusion 

again develops over exact ly  what are the  appropriate  unperturbed 

series l i m i t s  (see Section 2 ,  above): t he  maximum possible  is 

66,035 cm-', g iving an observed upper l i m i t  t o  the  ionizat ion 

depression of some 800 c m - l .  The theoretical treatment of t he  

ion iza t ion  lowering w h i c h  appears t o  be most appl icable  t o  the  

shock-tube plasma involves the Debye radius  as  the  appropriate  

i n t e rac t ion  dis tance.  Perhaps t h e  best (although not  t he  first) 

discussion of t h i s  can be found i n  the  paper by Ecker and Id11 

(1963). I n  brief, t he  ionizat ion depression, A I ,  of the first 

ion iza t ion  po ten t i a l  is  given t o  f i r s t  order by the  Debye-Hkkel 

theory: 

0 

AI = e2/rD 

where r the  Debye radius ,  can be wr i t t en  
DJ 

Ni and Zi being the  number densi ty  and charge, respect ively,  of 

t h e  neighboring electrons and ions.  This theo re t i ca l  cor rec t ion  

was appl ied t o  the ionizat ion p o t e n t i a l  i n  equation ( 7 ) .  In  the  
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most s e n s i t i v e  case ( the  h o t t e s t  run)  t h i s  correct ion amounted t o  

150 cm-I and affected t h e  absorption coe f f i c i en t  de r ived  from t h i s  

one run  by 1.5%; the  correct ions t o  other  individual  runs w e r e  

less, depending on the  temperature. 

theory not  apply and the  ac tua l  lowering be mre i n  l i n e  with 

the observed upper l i m i t ,  then the  ove ra l l  s t a t i s t i c a l l y  averaged 

absorption c o e f f i c i e n t  would be ra i sed  by some 2%. 

Should t h e  Debye-Htckel 

No correct ion has been made fo r  the  cool boundary layer  

This is  j u s t  next  t o  the window and l ens  of the shock tube. 

important, p a r t i c u l a r l y  since p a r t  of t h i s  experiment deals  w i t h  

t h e  measurement of a c ross  sect ion from the  ground leve l .  I f  

boundary layer  effects a r e  s i g n i f i c a n t ,  t he  derived absorption 

c o e f f i c i e n t  from the  ground l e v e l  w i l l  be too la rge ,  while t h a t  

from higher l e v e l s  may be too small. 

boundary-layer behavior i n  the  r e f l ec t ed  case is  d i f f i c u l t  and 

is  fu r the r  complicated here by the  geometry of f l a t  windows i n  a 

c i r c u l a r  tube.  The most important parameter a f f ec t ing  the  v a l i -  

d i t y  of t he  measurements i s  the  temperature p r o f i l e  of such a 

boundary layer ,  s ince l a t e r a l  pressure equilibrium is more o r  less 

achieved by the  t i m e  of the  f l a s h  t u b e  discharge ( - / lo0  psec 

behind the  shock). If w e  assume t h a t  boundary-layer growth is  

pr imari ly  a heat-conduction problem by t h i s  t i m e ,  then an approxi- 

mate ana lys i s  shows t h a t  a 1 - 2% correc t ion  might be appropriate 

A deta i led  ana lys i s  of t he  
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f o r  t he  ground-level cross  section, but t h a t  even the  other  l eve l s  

of t he  P term a r e  much l e s s  a f fec ted .  3 

There is  subs t an t i a l  evidence t h a t  conditions behind the  

r e f l ec t ed  shock are i n  a s t a t e  of LTE (cf. Garton, e t  a l . ,  1965; 

G r i e m ,  1964). This property is e s s e n t i a l  t o  t h e  usefulness of 

t h e  shock t u b e  as a quan t i t a t ive  spectroscopic instrument. A l l  

t h e  experiments w e r e  carefu l ly  delayed some 100 ysec  a f t e r  t he  

passage of the  shock t o  insure t h e  re laxa t ion  of the  plasma, and 

t h e r e  was no indica t ion  t o  the contrary.  However, the  f l a s h  

t u b e  gives some cause fo r  concern, fo r  it may have a depopulating 

e f f e c t  on various l eve l s  through photoionization. If a l eve l ,  

whose b-f absorption coe f f i c i en t  we  a r e  attempting t o  measure, 

i s  depopulated by t h e  f l a s h  tube,  then the  absorption c o e f f i c i e n t  

measured is  too low. I f  we u s e  pess imis t ic  numbers character iz ing 

t h e  f l a s h  tube -- 20,000°K fo r  5 wsec (Parkinson and Reeves, 1961) -- 
and overestimate other  parameters of the  problem, we  f ind that  i f  

c o l l i s i o n a l  processes a r e  inac t ive  over t he  duration of the  f l a sh ,  

t he  ground t e r m  w i l l  be depopulated by about 2%. Similarly,  the  

depopulation of t h e  higher D and S l e v e l s  w i l l  be somewhat less. 

This number is  most c e r t a i n l y  an overestimation, b u t  it causes u s  

t o  examine the  c o l l i s i o n a l  r a t e s  t h a t  would tend t o  maintain the  

equilibrium population i n  the shock tube .  Using the  p r inc ip l e s  

of de t a i l ed  balancing, we  examine the  r a t e s  of c o l l i s i o n a l  ioniza- 
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t i o n  and c o l l i s i o n a l  exc i ta t ion .  W e  f ind t h a t  the  former i s  

e n t i r e l y  inadequate t o  compete with any disrupt ion of t h e  f l a s h  

tube: t he  r a t e  of c o l l i s i o n a l  ion iza t ion  i n  t he  shock tube is  

much less than the  r a t e  of photoionization by the  f l a s h  tube .  

However, using conservative f-values and the  approximate r e l a t i o n  

given by Allen (19631, we find t h a t  c o l l i s i o n a l  exc i t a t ion  rates 

a t  6000°K a r e  almost an order of magnitude grea te r  than photo- 

ion iza t ion  r a t e s .  Thus, equilibrium r e l a t i o n s  should hold generally.  

There remains a possible source of systematic e r r o r  which, 

i f  operat ive,  is  not amenable t o  simple analysis .  This source 

is the possible  chemical react ion of t he  SiIScl, with the  copper 

w a l l  of t h e  shock tube d u r i n g  t h e  minute  o r  two j u s t  before the  

shock is f i r e d .  Any such react ion i n  which s i l i c o n  is l o s t  from 

the  vapor would cause the  measured absorption coe f f i c i en t  t o  be 

too low. However, even l iquid SiHC13 is  not observed t o  r e a c t  

with copper, and there  i s  no evidence t o  ind ica te  t h a t  any such 

reac t ions  d i d  i n  f a c t  t a k e  place i n  t he  shock tube. 

ABSORPTION FROM THF, GROUND TERM (3P) 

Nine p l a t e s  w e r e  taken, from which the  ion iza t ion  continuum 

of the  3P t e r m  was measurable. 

0.1% of SiHCl, i n  argon. Conditions w e r e  varied so a s  t o  obtain a 

range of temperatures between 5000°K and 7000°K behind the r e f l ec t ed  

shock. O f  these nine p l a t e s ,  four w e r e  of superior qua l i t y  and 

These experiments required nominally 
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w e r e  used for s ta t i s t ica l  averaging. However, t h e  averaging of 

a l l  nine p l a t e s  gave r e s u l t s  that  d i f f e r e d  from the average of 

t h e  four by only 1%, w h i l e  y ie lding a smaller s t a t i s t i c a l  probable 

error. 

t h e  experiment is l i m i t e d  by t h e  transmission of the LiF windows 

and by t h e  decrease i n  i n t e n s i t y  of t h e  l i g h t  source. 

The plates  include the  region down t o  about 1200 A ,  where 

The r e s u l t s  of the measurements are shown i n  Figures 3 and 4.  

Absorption contr ibut ions f r o m  the  individual  J l e v e l s  of t h e  sp l i t  

P t e r m  are, of course, no t  separable i n  t h e  experiment (see Table 3 

1). Since t h e  various p a r t s  of the experiment w e r e  performed a t  

s l i g h t l y  d i f f e r i n g  temperatures, and s ince  even a t  these tempera- 

t u r e s  t h e r e  is a s m a l l  departure f r o m  un i ty  i n  t h e  Boltzmann factor 

f o r  t h e  J = 1 and J = 2 l eve ls ,  a very small cor rec t ion  w a s  made 

t o  reduce a l l  individual  measurements t o  a common basis. The 

p a r t i t i o n  funct ion p lays  an  important p a r t  i n  these reductions,  

and f o r  these values we  have in te rpola ted  f r o m  t h e  tables of 

Drawin and Felenbok (1965). In  t h e  data presented here,  the  

cont r ibu t ion  t o  t h e  t o t a l  absorption by b-f t r a n s i t i o n s  f r o m  

the D l e v e l  has been removed i n  an approximate manner: we have 

taken t h e  experimental value for t h e  magnitude of t h e  absorption 

f o r  t h i s  ID l e v e l  and have assumed the wavelength dependence f r o m  

a t h e o r e t i c a l  calculat ion.  Both of these  p a r t s  are discussed i n  

the  next sect ion.  The correct ion amounts t o  7% a t  1525 i, 
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decreasing by h3 t o  4% a t  1250 i. 
t h i s  fashion has obvious shortcomings, t h e  problem of t h e  d i f f e r -  

ing r e l a t i v e  populations of the ' D and 3P t e r m s  a t  d i f f e r e n t  

temperatures does not  en te r .  The reduced r e s u l t s  give a threshold 

cross sec t ion  of 37 2 4 megabarns (10-1 * cm2 ) . The s a m e  probable 

error applies t o  t h e  e n t i r e  curve i n  Figure 3. Possible unaccounted 

systematic errors have been previously discussed, bu t  they would 

not  appear t o  be considerable. The standard deviat ion of t h e  

measurements of about 15% i s  cons i s t en t  with t h e  random errors 

involved with t h e  f l a s h  tube, t h e  emulsion, and the pressure- 

temperature measurement. 

While present ing the data i n  

The appearance of t h e  spectra near t h e  l i m i t s  is de ta i l ed  

i n  Figure 4. A s  s t a t e d  above, t h i s  i nd ica t e s  t h a t  t h e  maximum 

depression of t h e  ion iza t ion  p o t e n t i a l  by t h e  plasma e f f e c t s  is  

s o m e  800 cm'l . The merging of high series l i n e s  is obvious, and 

while  individual  l i n e s  are not resolved, l i n e s  of series whose 

upper l e v e l  has a p r inc ipa l  quantum number of 1 2  or 13  l i e  i n  

t h e  v i c i n i t y  of 1540 i. 
2 3  N e a r  1250 the three l i n e s  of t h e  t r a n s i t i o n  3s23p Po + 

J J  

3s3p3 '$ appear rather s t rongly (see Figures 1 and 3) and are 

not  resolved. These l i n e s  have previously been i d e n t i f i e d  (see 

R & A ) ,  and they are probably v i s i b l e  i n  emission i n  t h e  solar 

spectrum i n  t h e  red wing of Ly c1. Although t h e  reso lu t ion  is  



poor, these l i n e s  do not  appear t o  possess s t rong autoionizing 

properties. On t h e  one hand, t h i s  might be expected s ince  there 

is no '$' continuum with which t h i s  l e v e l  can combine via  a 

r a d i a t i o n l e s s  t r a n s i t i o n .  O n  t h e  o ther  hand, t h e  a r c  spectrum 

ana lys i s  (R & A )  i nd ica t e s  t h a t  t h e  higher l e v e l s  of the  atom 

depa r t  s i g n i f i c a n t l y  from L-S coupling and therefore w e  might 

expect L-S s e l e c t i o n  r u l e s  n o t  t o  hold i n  t h i s  case (pa r i ty  and 

J-value requirements a r e  e a s i l y  sa t i s f ied) .  Above t h e  3!$ l e v e l  

there should be two more t e r m s  of the 3s3p3 configuration: a 

and a P1 . N e i t h e r  of these has y e t  been observed: both 1 0  

should e x h i b i t  autoionizing c h a r a c t e r i s t i c s  according to  L-S 

s e l e c t i o n  r u l e s  and the re  may w e l l  be resonances i n  t h e  continuum 

a s  one goes toward shor t e r  wavelengths. 

Burgess and Seaton (1960) have developed a method for 

ca l cu la t ing  photoionization cross sec t ions  of moderately complex 

atoms. This method, known as t he  quantum defec t  method (QDM), 

extends the  work of Bates and Ismgaard (1949) and of Seaton (1958). 

The QDM ca lcu la t e s  b-f absorption c o e f f i c i e n t s  a s  extensions of 

L-S coupled series i n  which t h e  rad ia l  w a v e  funct ions f o r  both the 

bound and continuum states a r e  determined f r o m  t h e  experimentally 

observed energy l e v e l s  (quantum defects) of the a t o m .  For the 

continuum s t a t e s  these  must be extrapolated through the series 

- 1 --.- i m i t  - - Tt.e methed kas rece-n-tly beer, sim~lified and improved by 

G. Peach (pr iva te  communication, 1965). W e  have applied these  
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func t ion  d i f f e r s  s i g n i f i c a n t l y  f r o m  un i ty  and is f a i r l y  s e n s i t i v e  

t o  t h e  behavior of t h e  quantum defec t  i n  t h e  v i c i n i t y  of the 

l a t e s t  methods t o  S i  I to ca l cu la t e  t h e  b-f absorption coe f f i c i en t s .  
I 

I There are t h r e e  d i f f i c u l t i e s  tending t o  inva l ida te  the 

app l i ca t ion  of QIm t o  S i  I: 

1. The normalization f ac to r  for the bound r a d i a l  wave 

a l l  amplitude of t h e  absorption c ross  sec t ions .  I 
2. L-S coupling i s  known t o  break down i n  the higher l eve l s ,  I 

as  i l l u s t r a t e d  by inverted t e r m  l e v e l s  and intercombination l i n e s  

(R & A  present  a very good discussion of t h i s  matter). 

QDM assumes the continuum t o  be composed only of t e r m s  permitted 

by L-S s e l e c t i o n  ru les .  

The 
I 

3. The poor behavior of the  experimental quantum defects 

(see R & A )  proh ib i t s  r e l i a b l e  extrapolat ion of these  quantum 

defects even a s  f a r  a s  the l i m i t s ,  and c e r t a i n l y  f a r t h e r  i n t o  

the  continuum. A considerable amount of the d i f f i c u l t y  is  

caused by per turba t ions  a r i s i n g  f r o m  the t e r m s  of the 3s3p3 

configurat ions,  which l ie  b e l o w  the l i m i t s  of the 3s2 3p2 config- 

ura t ion  (see Figure 1) . Unknown configurat ion in t e rac t ion  above 

the  l i m i t s  probably plays a notable r o l e  a l so .  

The normalization fac tor  f o r  the bound s ta te  wave funct ion 

J (14) 2& 
an* 5 (n*) = 1 + 

is given as 
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where 

being the  ionizat ion l i m i t  of  t he  series (Rydbergs) and E the  

exc i t a t ion  energy of t h e  l e v e l  (Rydbergs). ~1 = n - n* is  t h e  

quantum defect, where n is  the p r inc ipa l  quantum number of t he  

l eve l .  

is near ly  unity.  However, t h i s  i s  not  t he  case with the  lower 

* is  made somewhat more an* l e v e l s  of S i  I. The evaluation of 

t r a c t a b l e  by p l o t t i n g  p vs. 

l i n e a r  i n  the  regions of i n t e r e s t .  Evaluating t h i s ,  we  obtain 

n* = 1/,/- is the e f f ec t ive  quantum m e m b e r ,  with I 

I n  many cases ~1 is almost independent of n* and c(n*)  

(I-E), i n  which case @ is  near ly  

5(3P) = 0.323 . 

The normal procedure i n  extrapolat ing quantum defec ts  i n t o  

t h e  continuum is t o  attempt to  do so according to  

CL = a + be' 9 

w h e r e  e '  is  the  energy of t h e  e jected e lec t ron  (Rydbergs), and 

a and b a r e  empirical constants taken from observations of bound 

l e v e l s  a s  they go toward the l i m i t .  The r a t i o n a l i t y  of such a 

form is discussed by Shenstone and R u s s e l l  (1932) f o r  cases i n  

which the  series are not  perturbed. HOwever, i f  we  use the  data 

of R & A, we f ind  the per turbat ions are obviously large.  

b-factors i n  equation (15) for  s o m e  series are completely irra- 

t i o n a l  (e.g. ,  f o r  the 3pnd 3P0 series the  higher m e m b e r s  i nd ica t e  

b = 10.3) .  

The 

As a r e s u l t ,  we  w i l l  no t  assume any extrapolat ion 
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beyond t h e  l i m i t  t o  be valid - a priori .  W e  w i l l ,  however, extra- 

po la t e  t he  data a s  f a r  as t h e  l i m i t  t o  determine the  value of 

a i n  equation (15) .  This process y ie lds  the  following values 

f o r  series combining with t h e  " P  t e r m :  

3pns 3 ~ 0 :  a = 1.900 

3pnd 3P0: a = 0.335 

3pnd "If: a = 0.075 . 

I f  w e  use  these s t a t e d  values fo r  5 and fo r  the  a ' s ,  t he  QDM ca l -  

cu la t ion  y i e lds  the  value of 34.2 megabarns a t  t h e  threshold 

( l i m i t s ) .  This is  t o  be compared with t h e  experimental value 

of 37 megabarns near t h e  threshold. 

For some p r a c t i c a l  cases it is  important t o  know the  wave- 

length (energy) dependence of t he  cross  sec t ion  a s  one goes 

toward shor te r  wavelenghts. Since extrapolat ion of quantum 

defec ts  through the  l i m i t s  is not r e l i a b l e ,  w e  w i l l  attempt t o  

fit the  quantum defec ts  t o  the form of equation (15) using t h e  

experimental da t a  and neglecting possible  resonances. In  the  

assumed L-S coupling, t he  t r a n s i t i o n  t o  the  extension of the  

3pnd " If series dominates t h e  absorption coe f f i c i en t ,  and 

the  f i t t i n g  may be done by adjust ing t h e  c o e f f i c i e n t  b fo r  t h i s  

series. An examination of the calculated phase f a c t o r s  f o r  t h e  

other  two series indica tes  t h a t  their  respect ive b-coeff i c i e n t s  

should remain e s s e n t i a l l y  zero. The bes t  f i t  is obtained fo r  
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b(nd 31?) 0.75. The 

while such behavior is 

extended " f i t "  is  shown i n  Figure 5, and 

reasonable, the ca l cu la t ion  is  q u i t e  

suspect,  a s  explained previously. 

While the experimental value for t h e  photoionization cross 

sec t ion  from the  3P t e r m  should be a decent measure, i t s  sat is-  

factory agreement w i t h  t h e  ODM ca lcu la t ion  a t  threshold .should 

be considered fo r tu i tous ;  it should no t  be an t ic ipa ted  - a p r i o r i  

t h a t  the QDM could y i e ld  a s a t i s f a c t o r y  t h e o r e t i c a l  value. 

ABSORPTION FROM THE F I R S T  EXCITED LEVEL ( I D )  

The measurement of the  absorption c o e f f i c i e n t  of t h e  

continuum f r o m  the 'D l e v e l  (see Figure 1, Pla te  1, and Tables 

1 and 2 )  by the present  shock-tube method is hindered by the 

presence of s t rong  absorption l i n e s  from t h e  ground state. The 

problem is  one of measuring between t h e  l i n e s ,  w h i l e  accounting 

for  l i n e  wing contr ibut ions.  Between A1530 and A1674 there is 

only one region where a s a t i s f a c t o r y  measurement can be made -- 
t h i s  is a t  h1647. 

The ana lys i s  involves the s a m e  considerations and techniques 

a s  previously discussed. Mixtures that w e r e  nominally 1% S i E l ,  

i n  argon w e r e  used. Eight p l a t e s  w e r e  taken for t h i s  measurement, 

of which f i v e  w e r e  of superior q u a l i t y  and w e r e  used f o r  s ta t is-  

t i c a l  averaging. For various technica l  reasons the range of 

temperatures w a s  l i m i t e d  t o  5750 - 6300OK. There w a s  no need 



23 

t o  correct t h e  t o t a l  measured cross sec t ion  for  contr ibut ions 

from the higher ’S continuum s ince  such contr ibut ions should 

be less than 1%. 

The line-wing correct ion turned o u t  t o  be only 4%. To 

a r r i v e  a t  t h i s  f i gu re ,  we pursued a combined t h e o r e t i c a l  and 

observat ional  ana lys i s .  

shock tube w a s  t h e o r e t i c a l l y  analyzed and found t o  be almost 

e n t i r e l y  Van der  Waals broadening caused by in t e rac t ion  of t h e  

s i l i c o n  atoms w i t h  t h e  neut ra l  argon. If we use the formulation 

given by G r i e m  (1964) and se t  t h e  argon e f f e c t i v e  resonance 

f-value equal t o  unity,  t h e  dispers ion w i d t h  is ca lcu la ted  t o  

be 1.95 x lo1’ sec-l . (This is a f e w  percent  greater than one 

g e t s  by using the formulation i n  Allen, 1963). This y ie lds  

a = 1.4, a being t h e  ra t io  of t h e  dispers ion width t o  the thermal 

doppler width of t h e  l i n e .  Assuming th i s  value app l i e s  t o  a l l  

l i n e s  i n  t h e  v i c i n i t y ,  and measuring the equivalent w i d t h s  of 

a l l  l i n e s  and blends of l i nes ,  approximately, on t h e  set  of plates 

used previously t o  m e a s u r e  the  P continuum, we can determine 

approximate gf-values f r o m  the curve-of-growth. W i t h  the 

gf-values, t h e  concentrations, and t h e  value for a, t h e  absorp- 

t i o n  coe f f i c i en t  i n  t h e  l i n e  wing is  r e a d i l y  calculable .  A l l  

l i n e s  i n  the  v i c i n i t y  w e r e  analyzed; these included mul t ip l e t s  

22 through 32 i i s t e d  by &ore {i950), although rnfy contr ibut ions 

f r o m  numbers 25 through 2 8  w e r e  s ign i f i can t .  The combined con- 

The line-broadening mechanism i n  the 

3 
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t r i b u t i o n  represented 4% of the absorption c o e f f i c i e n t  a t  1647 i. 
The theory, though, i s  not  well es tabl ished,  and t h i s  causes some 

uncer ta in ty  i n  t he  calculated dispers ion width of t he  l i n e s .  If 

t h e  a c t u a l  width is l a rge r ,  the  wing cor rec t ion  is l a rge r ,  and 

conversely. Knowing the resolut ion of t he  spectra  we can, however, 

simply m e a s u r e  t h e  apparent half-widths of the l i n e s  and e s t a b l i s h  

t h a t  the  parameter a can not  exceed 10. If t he  foregoing ana lys i s  

is  repeated with t h i s  lat ter value of a, t he  observed maximum 

poss ib le  line-wing correct ion is  8% -- an u n r e a l i s t i c  upper l i m i t .  

The measured value of the photoionization cross  sec t ion  

from the  'D l e v e l  a t  1647 A is 33 - + 2 megabarns, with correc- 

t i o n s  applied.  

0 

The quantum defec t  ca lcu la t ion  fo r  continuous absorption 

from t h e  'D l e v e l  proceeds i n  t h e  s a m e  manner a s  discussed fo r  

the  3P l eve l s ,  and encounters s imi l a r ,  b u t  m i l d e r  d i f f i c u l t i e s .  

The assumption of L-S coupling p red ic t s  t h a t  the  absorption 

c o e f f i c i e n t  is dominated by t r a n s i t i o n s  t o  the  extension of 

t he  3sa3pnd ' 9  series, whose quantum defec t  extrapolates  unreli- 

ably,  having a b - t e r m  (equation (15) of about  2.55. However, 

t he  relevant  quantum defects  appear t o  be better behaved than 

those important i n  t h e  3P continuum, and t h e  QIlM may be s o m e w h a t  

more applicable.  W e  determine t h e  bound-state normalization i n  

the same manner a s  before: 

5 (l D) = 0.378 (see equation (14) 1. 
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The following extrapolated quantum defec ts  a r e  obtained from 

R & A fo r  those series that  a r e  L-S coupled with the  'D l e v e l :  

3pns 'Po: a = 1.86, b = 0 

3gnd 'Po: a = 0.03, b = 0 

3pnd '8: 

3pnd 'I?: a = 0.350, b = 2.55 

a = 0.410, b = 0.895 

The r e s u l t s  of the ca lcu la t ion  a r e  shown i n  Figure 6. A c t u a l l y ,  

t h e  calculated absorption coe f f i c i en t  over t h i s  l i m i t e d  wave- 

length region w i l l  ha rd ly  change i f  a l l  b -coef f ic ien ts  a r e  set 

equal t o  zero. 

It is  on the  basis of t h i s  ca lcu la t ion ,  normalized t o  the  

experimental po in t ,  t h a t  t he  cor rec t ion  t o  t h e  t o t a l  c ross  sec t ion  

is obtained t o  i s o l a t e  t h e  3P continuum (Figure 3). The frequency 

dependence is approximately v - ~ .  

ABSORPTION FROM THE SECOND EXCITED LEVEL ('SI 

Experimental d i f f i c u l t i e s  have thus f a r  prevented the  

shock-tube measurement of t h e  absorption c o e f f i c i e n t  of t h e  

' S  continuum. 

through the  use of s l i g h t l y  modif ied techniques and d i f f e r e n t  

v o l a t i l e  s i l i c o n  compounds. 

An e f f o r t  is present ly  being made t o  remedy t h i s  

It is  somewhat i ron ic  t h a t  t h i s  l eve l ,  which presents  t h e  

most experimental d i f f i c u l t i e s ,  appears to possess reas=nably 
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w e l l  behaved quantum defect  extrapolat ions.  Even though t h e  

L-S coupling assumption is j u s t  a s  poor, we might expect t he  

QIM ca lcu la t ions  t o  be more r e l i a b l e  f o r  t h i s  l e v e l  than f o r  

t h e  previous two. W e  obtain the bound-state normalization as 

before: 

G(lS) = 0.453 . 

The quantum defect extrapolat ions used f o r  t he  L-S coupled 

series are :  

3pns 'Po: a = 0.03, b = 0.0 

3pnd 'Po: a = 1.86, b = 0.0 . 

The r e s u l t s  of t h e  ca lcu la t ion  a r e  shown i n  Figure 7. 

The calculated frequency dependence is roughly v-l.'. 

old value of 46.5 megabarns can be compared with the  r e s u l t  of a 

s i m i l a r  ca lcu la t ion  by Bode, a s  quoted by Kodaira (1965); h i s  

value is  39.4 megabarns. 

The thresh- 

SUMMARY 

The foregoing experimental r e s u l t s  ind ica te  t h a t  n e u t r a l  

s i l i c o n  is a very s t rong absorber of u l t r a v i o l e t  rad ia t ion .  

These r e s u l t s  are supported by approximate ca lcu la t ions .  I n  

a l l  cases these r e s u l t s  a r e  s i g n i f i c a n t l y  higher than earlier 

approximations such as those of V ipnse  (1951). 

experiment and theory exhib i t  c e r t a i n  inadequacies, the  values 

presented here should be useful i n  t h e  study of stellar atmospheres 

While both 
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as  w e l l  as  t h e  u l t r a v i o l e t  so la r  spectrum. 
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TABLE 1 

S e l e c t e d  Energy Leve l s  of the S i  I - Si I1 System 

l eve l  

si I 3s23p2 3 ~ 0  

P1 

p2 

3 

3 

energy ( c m - l )  

0 (Si 1 ground 
l eve l )  

77 .12  

223 .16  

l Q 2  6298.86 

l so  15394.37 

si 11 3s23p 2 ~ : /  

2 0  
Pa/ 2 

si I 3s3p3 ’$ 

65747. 

66035. 

79664. 

(Si I1 ground 
l e v e l )  



TABLE 2 

Unperturbed L i m i t s  of Series Coming from Transi t ions  
f r o m  the 3s23p2 Configuration of si I Converging on 

t h e  Ground Levels  of S i  I1 

S i  I Term S i  I Level S i  I1 Level 

c a Po p3/ 2 

P1 3 11 

p2 

PO p1/ 2 

Pl 

3 I1 

2 3 

3 

3P 

I t  

I1  3 Pl/ 2 

I1 3 Pl/ 2 

1514.3  

1516 .1  

1519.5 

1521.0 

1522.8 

1526.2 

1674.0 

1682.1  

1974.7 

1986.0 
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Figure 1. Energy leve l  diagram of S i  I. Labelled l o w e r  
l eve l s  a l l  belong t o  3s23p2 configuration. No 
attempt is  made to include high-lying, c lose ly  
spaced l eve l s .  
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has been used to remve contribution from 'D 
level. 
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